A description of evanescent modes in
open-ended applicators and cavities

The optical analogies of propagating and
evanescent modes is first dealt with. Fva-
nescent waveguide and open-ended ap-
plicator (“HERA”) modes are then
addressed. The text is intended for per-
sons with some experience in mathe-
matical physics, and provides some
basics of the theory.

1 Propagating modes in a waveguide

Plane wave propagation is a very important case — but
also very special. According to the basic theory of
electromagnetism, all magnetic field lines are to be
closed, but this happens only “in infinity” for plane
waves. For such waves to be a realistic approximation,
the distance from the source to the region under study,
as well as the size of the region itself, must be very
much larger than the wavelength. In all cases where
the region under consideration is not infinitely larger
than the source and the wavelength, the magnetic field
lines form closed loops. The region where the electro-
magnetic fields exist is then limited and defined.

It 1s found that such fields under stationary time-
harmonic conditions assume characteristic and discre-
te single or multiple (added) patterns. These can be of
many kinds, examples being the single pattern in a
coaxial line and the multiple interference pattern in
large metal (multimode) cavities. Theoretically, there
is only one solution to the wave equation in each such
case, but this solution can almost always be separated
into dependent, partially dependent or independent
simpler modes.

Modes are each of the possible configurations of the

fields in a given domain in space’.

In microwave heating applications, separation of the
overall field pattern into modes is a very important
tool for both understanding of mechanisms and for
system synthesis.
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The rectangular waveguide offers an application of an
instructive method to develop mode characteristics
and conditions for propagation. The waveguide walls
can be considered to be perfect conductors. It then fol-
lows that there can be no parallel electric field compo-
nent at the walls. This is used in the geometric
approach below. The use of image sets of plane waves
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to represent waveguide modes is generally called the
electromagnetic ray concept. The concept should not
be considered to be “true” in a physical sense — it is
merely a manipulation of the simple plane wave con-
cept. That there is a deeper truth than that provided by
the electromagnetic ray concept is shown by its failure
to address the excitation problem. However, it pro-
vides an important link between plane waves and
waveguide modes.

The geometry of a plane wave incidence situation,

a

Figure 1. A metal trough with two
TM-polarised rays

with two symmetrical incident rays 8 is shown in Fig-
ure 1. It shows a cross section (constant y plane) of a
rectangular trough with width ¢ in the z direction. It is
considered infinite in the y direction (=) and is
filled with a dielectric at the bottom, but any effects
by the dielectric are not yet studied. The rays have
polarisations (electric field — E — directions) perpen-
dicular to the Poynting vectors § and are of the TM-
polarised type* with the plane of the dielectric as

T This is the standard definition in the IEC Electrotechnical Vocabulary (IEV).

1 Obliquely incident plane waves in free space can be separated into TE-polarised and TM-polarised waves. The latter are characterised
by there being no magnetic (H) field in the (z) direction of propagation. Only TM-type fields are of interest here.



reference surface. The rays have incidence angles 6.
The instantaneous £ field lines are shown 34, apart
and represent moving positive and negative amplitude
maxima. Since the waves are of constant frequency
(time-harmonic), the two waves are to be vectorially
added to represent the real situation. When this is
made, the total field lines become as illustrated in Fig-
ure 2. The illustration represents an instantaneous
situation of a propagating guided mode, with no
reflected waves from the dielectric boundary. It is

L5
A

a

Figure 2. Vector E fields.

drawn in the same way as are waveguide mode illus-
trations in the microwave literature. This method may,
however, lead to misunderstandings, since the ampli-
tudes of the fields cannot be correctly described by
closed lines with the amplitude being represented by
their relative closeness. A more proper way of illus-
trating the fields is by quiver plots; see Figure 3.

The boundary condition at the metal walls require that
there be no parallel (£}) component and thus restricts
the relation between 6 and a. Since the incidence ang-
les @ are unchanged upon reflection, one obtains
a=m-}A /sin6, with m =3 in the figure. m is an integer
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Figure 3. E fields in the waveguide of Figure 2.

and represents the number of z-directed standing
halfwaves.

Of course, the waveguide may have an analogous field
pattern also in the other vertical (constant x) plane. By
relatively straightforward geometric calculations for
the general case with four incident plane waves all
having the same incidence angle ¢ and four symmetri-
cal side angles ¢, one obtains

sin*0 = (3, V- [(m/a)’ + (n/b)’]

where n 1s the number of halfwaves and b the
waveguide width, both in the y direction.

(1-1)

From figure 1, the z-directed wavelength of propa-
gation of the waveguide mode becomes

A, =A/cos 0 (1-2)

For =90° (sinf=1) propagation ceases if the wave-
guide is superconducting and infinitely long in the z
direction. #=0 corresponds to free space TEM propa-
gation. It is concluded that sin@ corresponds to A,/A_,
where A_ is the “cut-off” wavelength — the longest A,
allowing normal propagation in such a very long
guide. Since A, is inversely proportional to f, sinf also
corresponds to f /f, where f_ is the waveguide




frequency below which no propagation of the spe-
cified mode can occur in the infinitely long supercon-
ducting waveguide. In this border case, the mode
becomes evanescent and A, becomes infinite.

The parameter sin@ is therefore of ut-
most importance in waveguide analysis,
and is labelled the normalised wave-

length v':
v =f/f =sinf (1-3)
Equations (1-1) and (1-2) then become
v: = (34, [(m/a)’ +n/b)’] (1-4)
pypp—_ - (1-5)
1-v2

The normalised wavelength v is actually typically a
short interval, since the operating frequency in heating
applications is in a limited interval of — say — 2440 to
2460 MHz. Equation (5) has a limited number of inte-
ger solution pairs (m;n) in each given interval of v. As
a consequence, all possible combinations of (m;n) —
modes — for given values of a and & are represented by
a finite set of v values.

e o
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There are of course also less intuitive and more formal
methods to analyse waveguide modes than by the
electromagnetic ray concept. Solutions to the electro-
magnetic wave equations in terms of analytical func-
tions exist in several co-ordinate systems, such as the
rectangular and circularly cylindrical, and are then ob-
tained by the so-called separation of variables method.
Three separation coefficients are obtained, each being
dependent on only one of the co-ordinates. In the rec-
tangular system these are z, y and z. If these separation
coeflicients are labelled &, k, and k,, the separation,
eigenvalue or wavenumber equation becomes

kE+kl+k =k (1-6)
where £ is ke in a region with relative permittivity &
and k, is the free space angular wavenumber w/c, =
2n/A,. The solutions are then elementary wave func-
tions and are called eigenfunctions, which are expan-
ded to give the equations for all field components. The
k., k, and k, values are determined by the boundary

conditions and called eigenvalues or just
wavenumbers.

For the guides in the figures above, the eigenfunctions
are all sine or cosine functions. With the waveguide
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cavity dimensions =0 to a and y=0 to b equation
(1-6) becomes

2 2 2
mn nn 2_(2n
(a) +(b) +kz_()toj
where m and n are integers as before, and A, is the free
space wavelength.

(1-7)

Returning to Figure 1 and the boundary between the
trough space and the dielectric, it is found that k_and
k, must each be the same in both regions, to fulfil the
conditions of continuous /7 and tangential £ fields
everywhere at the horizontal boundary. Their sum
k+k} (and thus the normalised wavelength v, ac-
cording to equation (4)) then has to be the same in all
layers. — This 1s, however, only valid exactly if two
conditions are fulfilled: the dielectric has to fill the
whole cross section; and there should be no direct
(nearfield) influence by the source.

The propagation in the forward direction in a wave-
guide filled with a dielectric with relative (complex)
permittivity ¢ is determined by an exponential func-
tion exp(—jk z); in the backward direction the function
becomes exp(+jk,z). The propagation equations (ana-
logue to the equations for free space propagation) thus
become

E(z) = E(0)-exp(uitzik,2)
k, =k, \ev? (1-8)

where the relative permittivity is 1 in the empty wave-
guide space and ¢ in its loaded part.
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Figure 4. Coordinates (optical case)

1 The notation v is specified in the IEC-27 standard. A, is given as an alternative, but the central importance of v justifies a simple, non-

indexed notation, which also reduces the risk of confusion.

T A good description of eigenfunctions is given in Harrington.



2 The “total reflection” phenomenon

If the incident wave, with a large angle of incidence ¢,
comes from a region with higher ¢, the law of re-
fraction gives sin@’> 1. This means that cos ¢’ becomes
imaginary. The negative root must be taken due to the
convention: exp(—jk, cos0’z), since the field amplitude
decays with z in the +z direction in a physical system.

Waves with these properties exist and are called
evanescent, as they do normally not propagate in the
low-¢ region. Formally, the generalised trigonometric
functions are valid for what is often called complex
angles. Of course, complex angles do not exist in the
real world. A better interpretation is given by the nor-
malised wavelength concept for modes in a metal
waveguide (such as the microwave oven cavity) or
along a reactive boundary.

The factor v which is sin0" in the optical
case actually characterises propagation
in a more general way than just by a pla-
ne wave angle and can be any positive
number. The wave becomes evanescent
when v passes 1.

Mathematically, arcsinv where v is real and > 1 is ob-
tained as (arguments in radians; underlining signifies a
complex quantity)

sinf = sin(Ref +j- Im6b) =v ;
Ref =% Im0 = In(v—/v*-1) v>1 (2-1)

The cosine function is obtained from v, for the trans-
mitted wave, as

v>1 (2-2)

The minus sign on the root is for decaying amplitude
in the y and z directions (see Figure 4).

Equation (2-1) indicates that the evanescent field
propagates along the surface in the y direction, with a
decaying amplitude in the z direction. Formally, all
equations for normal propagation can be used to cal-
culate fields, impedances and boundary conditions,
except in the singularity case cos6'=0. That case is
only mathematical, however (the function is continu-
ous at 6" =90°).

The simplest way to quantify the situation is by
using equation (1-8). Inserting v =sin¢" and studying
the evanescent wave in the airspace above the dielec-
tric surface one then obtains the decay distance dj—
for both TE and TM polarisation:

_ Ao _ Ao
41't~Im,/1—v2 411,/\72—1

This is the distance in an empty and constant cross
section waveguide over which the evanescent mode

cos0' = —j\/v*-1

(2-3)

4
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field amplitudes decay by a factor of ve (to 60 %)
and the enerqy density of the field by e (to 37 %).

As an example, the “critical” incidence angle inside
the dielectric becomes 30° for e=4. Using 6'=45° one
obtains v=+/4 -sin45°=+/2 and d; =9,7 mm at 2450
MHez. If instead =52 —j20 the critical angle becomes
only 7,7° and v at 0'=45° becomes 5,28. d; becomes
only 1,9 mm at 2450 MHz. It may be noted that the
complex & for a lossy substance should be used in the
calculation of v and d; and thus provides correct re-
sults. Evanescence in a region with ¢=1 always results
in Re0"=90°. With losses in it, Re " becomes smaller,
indicating some power transmission out from the
high-v dielectric — again only for very large dimen-
sions compared to the wavelength. For the microwave
situations considered here, the common terms “total
reflection” and “cut-off” are thus somewhat unfortu-
nate, since the fields may extend a practically sig-
nificant distance away from the dielectric object from
where the evanescent wave emanates. If there is a
short low-¢ region between two dielectric objects,
power may “leak through”, between the regions.

Finally, the small critical angle and short decay
distance of evanescent fields outside high-¢ objects
show that confinement of energy to the objects can be
almost complete if they are not close together.

This indicates that internal standing
wave phenomena may occur more readi-
ly in thin high-e dielectric objects which
are wedge-shaped or have other non-
parallel surfaces, than what may be con-
cluded from simple theoretical results
from slabs with parallel major surfaces.

3

For v=1, some field components and the Poynting
vector Svanish. This is, however, only a mathematical
singularity and valid only for infinitely long supercon-
ducting waveguides.

Zero index and evanescent modes

A TM mode type having v = 1 is colled
zero index mode. When v > I the mode is
evanescent.

Means for excitation are necessary in practical sys-
tems. This is briefly dealt with later.

The normalised wavelength v becomes larger than 1 if
a, b or the frequency is further reduced. The terms
“cut-off” or “critical” are often used in transmission
line engineering instead of evanescent, but is must be
noted that the propagation disappears “suddenly”
when the frequency is reduced only if the waveguide



is superconducting and infinitely long. If there is a
load which can absorb power, it will do that if the dis-
tance to the source through the waveguide is of the
same order as that over which the mode field intensity
decays by a factor e. As an example, if v=1,01 fora
waveguide mode at 2,45 GHz, the real part of jk -z
becomes 1 for 137 mm; the field intensity has thus
decayed by e over that distance. — It can be shown that
evanescent modes with about this v and even some-
what larger value may transfer a significant part of the
power over distances more than 200 mm in micro-
wave cavities. The interesting properties and potential
uses of evanescent resonant TM modes for microwave
heating applications are underestimated. The terms
“cut-off” and “critical” are thus indeed misleading for
studies of heating applicators and cavities.

Evanescent resonant modes

A basic condition for resonance is that the inductive
and capacitive field energies in the system are equal.
But an evanescent TM mode has an excess capacitive
(i.e. electric field ) energy, which is manifested by its
strong component in the direction of evanescence.

A simple mechanism — and actually that in the first
literature report on evanescent resonance in an unex-
plained illustration of a computational finding" — can
occur with lossy dielectric loads. This is because the
Poynting vector, which becomes ye—v’ /e, has a
positive imaginary component in such loads. They are
thus inductive. But these phenomena are quite weak.
They can, however, be amplified somewhat if the load
is thin (as it was in the literature report).

In the proprietary applicator (HERA?) systems, in-
ductive means in the applicator ceiling feed region
are instead used. The mode dj is about the same as
the applicator height — slightly less than A,.

Properties of the modes in the HERA systems

These systems offer a series of major advantages:

+ an unusually good and permittivity-independent
system impedance matching (high efficiency for a
variable load, during for example drying)

+ avery good thickness-independent system imped-
ance matching (high efficiency)

2 September 2006 P.O. Risman

* the strongest possible heating by the perpendicular
E| component, resulting in a more even horizontal
heating pattern of drying or semidry loads

+ very efficient use of the metal bottom of the cavity
or tunnel, to transform microwave energy “falling
between load items” to create strong so-called
under-heating (LSM) modes? that improve the
overall heating evenness

The top two items have been found to function re-
markably well. They are explained as follows:

1. Relatively much oscillating energy is confined in
the excitation region at the applicator ceiling, and
thus not evenly distributed everywhere as in a
multimode system.

2. The feed system acts as a field filter, effectively
prohibiting waves reflected back to the ceiling re-
gion to enter the magnetron waveguide unless their
pattern corresponds to those of the waves sent out
into the applicator. Other wave energy is just
reflected back down towards the load.

3. The pattern characteristics of a returning wave that
can enter the magnetron waveguide must be that of
the primary evanescent mode. But such a returning
wave becomes evanescent upwards into the appli-
cator, and therefore becomes very weakened on its
way. — Together with item 1. above, the result is
that a very small fraction of the energy that has
passed out from the applicator can find its way
back into the magnetron waveguide.

The factors above also explain the extremely low
power coupling between closely adjacent applicators —
typically 0,5 % or less. This makes it possible to as-
semble multiple applicators with common walls, into
large tunnel ovens. But the single mode heating pat-
tern characteristics typically necessitate staggering.
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1 Hybrid Evanescent Resonant Applicator. See e.g. patent application W02005022956 (A1), available at e.g hitp://ep.espacenet.com
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