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On microwave modes in gen-
eral and Brewster modes in
particular

The normalised wavelength v

The overall mode properties of any cylindrical’
waveguiding applicator or cavity of the TE and TM
type* can be characterised with regard to its imped-
ance (and by that wave reflection properties) by a sin-
gle parameter; the normalised wavelength v:

v =f/f=sin0 (1)

where 0 is the equivalent angle of incidence in the
geometric optics interpretation of mode behaviour, f
the operation frequency and f, the “cut-off” frequency
below which no propagation of the mode occurs in an
infinitely long waveguide.

Only a discrete set of modes may propagate in a
waveguide, since the F field parallel to the walls must
be zero. One may interpret this requirement by only
patterns of constructive interference being possible.
This geometric optics interpretation of mode behavi-
our gives the following relationships of the modes in a
rectangular waveguide:

v? = (A [(m/a)’ +n/b)’] 2)

where (m, n) are the horizontal mode (integer) indices,
and (a, b) the corresponding horizontal dimensions of
the rectangular cavity/applicator.

It is to be noted that theoretically very similar but
mathematically more complex results are obtained for
other waveguide cross sections such as circular.

An important relationship is the vertical wave-
length A of the mode:

Ay = —220

J1=v2
The loaded cavity; general

In order for analytical calculations to be possible, the
load extends to all four cavity walls, as shown in Fi-
gure 1. The load is characterised by its relative com-
plex permittivity e= &'—je", where ¢"/¢'= tano. ¢’ is the
(relative real) permittivity (“dielectric constant™), & is
the loss factor and ¢ the loss angle.

A simplification made here is to consider the load
so thick and lossy that there is no retroreflected wave

3)

from its bottom surface. If the load thickness is com-
parable to or larger than its penetration depth dp (about
7...20 mm for most unfrozen foods at 2450 MHz), no
essential changes occur. However, conditions become
different if the horizontal cross section of the load is
smaller. Therefore, the analysis is limited to cases
where the load covers at least half the cavity cross
section. Numerical modelling can be used to quantify
the differences with regard to cavity mode behaviour,
and it is then generally found that the approximations
used here are quite satisfactory, for reasonably flat and
large loads.

When the first downwards-going wave from the ceil-
ing feed area hits the load surface, a part of the power
is reflected upwards (by the load reflection factor )
and the remainder goes into the load (where it is sub-
sequently absorbed). The upwards-going wave is then
retroreflected in the ceiling area, with a reflection fac-
tor r". Since the definition of r is for the electric field,
it becomes negative for a normal mode both at the
load (having a lower impedance than that of the cavity
volume mode) and at the ceiling (which is supposed to
be essentially metallic, i.e. have a low impedance).
The successive reflections and retroreflections build
up a vertically standing wave, with an amplitude 4 in
its maxima which becomes (1—77)/(1—-r"-r") times
(larger) than the cavity input amplitude (set to 1). It
can be shown that a cavity matched to the input line
requires r =r". As an example, forr~=-0,7 and a
matched cavity, the amplitude becomes 3,3 times
higher than the input signal in the cavity. For a
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Figure 1. Reflection factors

T Cylindrical is used here mathematically: the horizontal cross section is constant along a z-directed axis. This means that for example
circularly cylindrical applicators can also be used for the purposes dealt with here. The discussion is, however, limited here to rectangular

applicators, for simplicity.

1 TE modes have no E field component in the direction of propagation, and TM modes no such H component. Generally, this direction

is z, and the major surface of the load is in a (constant) z plane.
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weakly coupled cavity (r*=—1) the amplitude be-
comes 5,7 times higher. If there is instead destructive
interference, this can be translated into r =+0,7 and
the amplitude becomes only 0,18 times for the weakly
coupled cavity. The resulting quotient of (5,7/0,18)
~32 times is reduced some by the retroreflection in
the ceiling, but the power density quotient becomes
this factor squared. It is obvious that only resonant or
low-r~ conditions will provide efficient power transfer
from the cavity input area to the load in typical micro-
wave oven cavities.

The need for resonance creates another important re-
striction of v (in addition to the “horizontal” re-
striction by equation (2)) and thus the number of
possible cavity modes as compared to the possible
vertically propagating waveguide modes in an open-
ended waveguide.

In the mode terminology normally used, a third
mode index p is used to characterise the standing
wave field variations of a resonant mode along the
vertical (z) direction. In an empty cavity, the p index
for TM modes can then be integers 0,1, 2, ..., where p
is just the number of %Ag in the z direction. Since the
ceiling and bottom of the cavity are plane metal sur-
faces they have approximately zero wave impedance.

With a typical dielectric load in a cavity with a
typical TM mode, the load impedance is lower than 7,
if v is reasonably low, and indices may be 1, 2, ... .
Since the load is supposed to be lossy and not have
zero impedance as has the metal bottom, the zero in-
dex situation becomes rather undefined and may not
be of practical interest.

Impedance relationships and
pseudo-Brewster modes

The important wave impedance relationship for TM
modes becomes

1, =1 Ne—vie 4)

where 7, 1s the wave impedance of free space and ¢ the
relative permittivity of the region; =1 in the
cavity/applicator space.

By setting 77, equal in the load with permittivity &
to that of the cavity space (with e=1), the equation
gives the condition for equal impedances and by that
reflectionless transmission into the load, as

e
VET e )

where subscript B is for the so-called Brewster
(reflectionless) condition.

Since v, corresponds to sinfj in the electromag-
netic ray description of waveguide modes, it can

easily be shown by some trigonometric calculations
that the Brewster incidence angle is

0, =arctan\e (6)

v has to be real for a cavity volume mode and perfect-
ly reflectionless conditions can thus not be achieved
for lossy loads. However, as is the case for the corre-
sponding plane wave, minimum reflection factors
(pseudo-Brewster conditions) can be obtained also for
high-loss loads. |¢| is then suitable to use and gives the
proper v also for high quotients &¢"/¢’. The minimum
reflection factor can be deduced by using Snell’s law
and the equivalent Fresnel cosine formula for TM-
polarised plane waves. One obtains the reflected
power at the pseudo-Brewster condition 6",

PIPE=(S/4Y>(1-2/le]) @t o) (7

where ¢ 1s in radians, superscript ¢ is for incident and r
for reflected. It is seen that P"/P* becomes quite small
for typical workloads. The formula gives a practically
insignificant error even for tand up to 3, which is
much higher than in any typical load considered here.

As examples, the following (frequency-independent)
data are obtained for the Brewster conditions, from
equations (3) and (5):

Brewster data for TM modes
AB,E/ Ay les| eiB (°) |vg
6 35 80% 0,986
5 24 78% 0,980
4 15 754 0,968
3 8 70% 0,943
2 3 60 0,866

It is seen from the table (and can readily be shown by
equations (3) and (5)) that the relationship between
Ag /A, and |e5| becomes quite simple:

A‘B,g/A‘O = Vleglt+1 (3)

Ay A, becomes quite high for ¢ values typical of many
load substances with a high water content. The v in-
terval of interest is rather narrow and close to the “cut-
off” limit v=1.

Brewster modes are not resonant since they do not
have any vertically standing wave in the cavity/appli-
cator. No p value can thus be assigned. Instead, a last
subscript B may be used.

Ty



