I
il

UNDERSTANDING MICROWAVE
HEATING CAVITIES IN USE TODAY

Per O Risman, Microtrans AB, Landvetter Sweden

A. Cavity volume resonances, matching and coupling factors

A1  Introduction

1s near the bottom, and the cavity height is comparable to or larger than A, one can analyse the

system by assuming that waves propagate upwards and downwards and set up standing wave
patterns in the vertical direction in a right-angled rectangular cavity’. These patterns are thus in princi-
ple determined by the same criteria as those in the horizontal directions. A typical load is essentially a
flat horizontal slab and can — for the purpose of this analysis — be approximated by a slab extending to
all four vertical cavity walls.

Since the cavity has to be energised and the load is at the bottom, it is suitable to discuss the en-
ergy coupling, field amplitudes and resonance phenomena under the assumption that the energy input
is at the cavity ceiling. It can be shown that only a small coupling area is needed, so that most of the
retro-reflected energy from the slab load is reflected back downwards. In reality, the ceiling area is
partially a reflector for the returning wave
and partially an aperture that allows
power to flow into the cavity and back - 7
into the feeding transmission line. | ¢,

The analytical scenario is illustrated i'
in figure A-1. The stationary input signal —4T —2=0
C," into the cavity is normalised to 1, but i
since the matching conditions at the aper- v G
ture are not the same at the beginning as C,’ n
under stationary conditions, the cavity
input signal with the transmission line

proah o tomary v, \\\\\\\\\\\\\§\X\\\\

A.2 Coupling factor and
system matching

S ince the upper (ceiling) and lower (bottom) ends of an oven cavity are closed by metal, the load

The reflection factor 7 is the electric field Figure A-1. Cavity feed and stationary signals
reflection factor at the load interface, and
the minus superscript is for the upwards
propagation direction, away from the load. It is determined by the general formula
. HL—#
- ny+n
(A-1)

T The theory here is in principle applicable to all cylindrical cavity geometries, i.e. those having a constant cross section in the z di-
rection. In practise, the circularly cylindrical geometry is the only other which is reasonably easy to use. However, TE and TM modes are
not degenerate in the same way for circular cross section, so hybrid mode solutions can normally not be calculated analytically.
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where # 1s the wave impedance of the cavity volume mode under study, and #,; the wave impedance of
this mode inside the load. If the load ¢ is complex, r also becomes complex. However, the spatial
phase of r due to the distance £ between the load and the reference plane at the ceiling and aperture
must also be included (as exp(—jk£), where £ is the cavity mode wavenumber). As discussed in section
3.3.3, no significant error is introduced by using |, | instead of #;, with typical dielectrics such as
foods. This means that r can be considered negative real, r, at z=/.

The cavity is fed by a transmission line, through an aperture (port), and the conditions in this feed
plane may conveniently be characterised as in figure A-1. The characteristic impedance of the trans-
mission line between the generator and the cavity is Z,. The propagating, stationary (time-harmonic)
signal amplitudes in the forward and backward directions in the transmission line are C,” and C, . The
quotient C,/C," is the transmission line reflection factor I'; it may be expressed as a complex number
Il"|e", representing its amplitude and phase angle in a suitable reference plane which may be the cavity
port or the generator coupling plane in the transmission line behind. In the cavity space the signals are
C,"and C,, respectively. The quotient C, /C," is the cavity load reflection factor 1, and refers to the
reference plane in the cavity ceiling.

It is common not to make sufficient distinction between transmission line and wave propagation
quantities in descriptions and analysis of systems of the kind dealt with here. Not only impedance but
also field matching are important in the junction between a transmission line and a cavity with a mode.
For that reason, different notation is recommended for transmission line impedances and reflection fac-
tors (Z and I") and for the corresponding wave quantities (# and ). The proper integration is done in
the aperture plane. — The boundary conditions for voltage and current in the port plane then give

C,(A+N)=C(1+1) (voltage and F field) (A-2a)

C,(1-I)/Z,=C/"(1-r)y (current and H field) A-2b)
It is convenient to label’ the quotient

Z/Mm=n,,=x (A-3)

» is the coupling impedance ratio and is an important parameter in cavity studies.
The aperture reflection factor " as seen from the cavity is thus

r* = (Z,~n)(Z,+1) = (e=1)/(e+ 1) (A-4)

It is important to note that our % does not only include an impedance matching or mismatching con-
dition but also a field matching or mismatching: Z, is a transmission line characteristic impedance,
whereas 77 and also #; are the characteristic wave impedances of a unidirectionally propagating mode
in the cavity and load, respectively. Both Z, and #; thus represent specific modes.

It is assumed here that Z, is approximately real, since the cavity is fed directly by a transmission line.
Since 77 is also real, x is also approximately real. If the cavity is fed by a very small aperture, Z,— 0.

Resonance — constructive interference between the upwards and downwards propagating waves — is
now assumed. Furthermore, matching of the feed line (/"=0) is assumed. Insertion of equation (A-1)
into equations (A-2) and subtracting the latter then gives

Z,=n, x=1 r=r=n n= L d (matching at resonance) (A-6)

B 1—7’R

T This, and the approch used here, does not appear in the literature. The greek letter kappa () has been used by some authors instead of &
for relative permittivity, but the risk of confusion here is minimal.
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A.3 Single mode system matching and I relationships for varying input

In the scenario in figure A-1, the aperture is supposed to have field matching to only the single mode
which is studied. This is theoretically possible if the aperture covers the whole horizontal cross
section, since waveguide modes are orthogonal. A way of physically constructing such a feed is to
completely fill the feeding waveguide with a dielectric. Its Z, then becomes #/ve. To feed this dielec-
tric- filled waveguide in turn with only the desired mode may pose a still larger problem, but the point
of the reasoning is that a cavity with the desired properties may be constructed.

In practise, a smaller aperture is used, without a dielectric. This may then create more than one cavity
mode, since it is only partially field matched to the possible modes.

A practical resonant cavity system for heating has to be efficient and must thus be reasonably well
matched. » for the single mode under study may then be set for system matching at resonance (y=1)
The perfectly field matched feed as described above is used in this analysis of single mode behaviour.
The frequency dependence of the stationary I" (=C, /C,”) can then be used as a practically relevant
output variable for determination of frequency bandwidth and other data for example by a standard
polar (Smith) chart. x at resonance (3) is then firstly calculated and Z, is then considered constant
(frequency independent) in the following

calculations. I is thus set to 0 at resonance REFLECTION FACTOR

(and for unidirectional propagation in the
cavity). By solving equations (A-2) for I as
a function of frequency within a suitable
band, one obtains

SWR valuaes
1. 2. 3. m
marked

4w (1)
4 4ur-(1-17)

(A-7)

Note that r refers to the E, , field at the cav-
ity ceiling and becomes negative real at TE
mode resonance. A sign change is made
when the calculations use the H, , field as
reference; this is the case for TM modes. For v=1
these, the sign of r changes when v’ passes
the Brewster value vy; the modified r~ thus
becomes +1 for v=1.

v-f is constant (it equals the “cut-off”
frequency f.). v must thus be varied to main-
tain constant cavity geometry under fre-
quency change. Of course, the frequency
dependence of v has to be used also in the re-
lationships for £, and in the recalculations of r .
Insertion of the impedance relationships in Ta-

Z=0

Figure A-2. The system I" in a microwave oven
scenario for one Brewster (TM) mode (v =0,992)
with ¥= 0,939 at 2450 MHz. Load e =52—520. 9,8
MHz between frequency markers; clockwise

. . . , mncrease.
ble A-1" into the definition of » gives, with =1
for the cavity space
W =1 (1=-vH)(1-v) (TEz modes)
(A-8a)
W =1 (1=v (1 =v?) (TMz modes) (A-8b)

T See the table in the Appendix. The normalised wavelength v is f,/f, where f, is the mode “cut-off” frequency.
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For variable frequency calculations, » thus replaces x, in equation (A-7).

There is a mathematical singularity for v=1, as 7 becomes exactly —1 irrespective of system dimen-
sions, for both TE and TM (before TM sign reversal). For TM, ¥— oo at v=1 for increasing v and »
—joo at v=1 for decreasing v; for TE %— 0 at v=1. Factors 0-cc and 0/0 thus appear in equation
(A-7), for TE and TM, respectively. They do of course not represent physical reality. It can be shown
that I” is continuous at v=1, due to the inclusion of ». — This is shown in Figure A-2, with I" for a non-
resonant TM (Brewster) mode with a load e=52—j20. v becomes |,/e/(e + 1) | =0,992 (sin&’~ 82,1°) at
the nominal frequency 2450 MHz. x is set to 0,939 at this frequency. — The system is rather narrow-
band, with v=1 at 2427 MHz and v=1,013 at 2396 MHz. In the latter case only 28 % of the power is
absorbed in the load; the mode energy decay distance d; (energy density decrease by &) is then 60 mm.
However, the system can of course be matched to I"=0 also at this frequency, but then becomes quite
narrowband.

In conclusion, using r as the essential property of systems gives incomplete and even misleading re-
sults. The coupling impedance ratio x is indispensable for determination of coupling design and cavity
field amplitudes. For microwave heating systems, the coupling factor y should be close to 1 for system
matching. The amplitude and phase of I" as function of the frequency provide a complete overall pic-
ture of the bandwidth and sensitivity of the system, including the expected generator efficiency.

A.4 Stmultaneous cavity modes

A.4.1 The equivalent circuit and the TEx o
mode amplitude relationships

The equivalent circuit is shown in Figure A-3,

for two only cavity modes. — The input line has

the characteristic wave impedance Z,, and the C,
generator has a voltage U. The aperture U Z, T
junction is represented by an ideal transformer
and the aperture step capacitance C,. The mode
E fields are thus the same for all modes, apart
from the ratios 1: NV, and 1: N, which are une-
qual since the E_ in the Fourier expansion equa-
tions for the mode fields of the excitation slot
are unequal. The modes are represented as se-
ries resonant circuits, with resistances R repre-
senting the loss in the load.

The most important conclusion from the
equivalent circuit is that the mode voltage
quotients are independent of the total system matching condition. Of course, the total efficiency of
energy transfer will be maximum at matching — but the relative amount of power carried by each mode
is independent of that. The modes are thus orthogonal, irrespective of the aperture data and system
matching.

The impedance transformation is accomplished by the aperture, which makes system matching
possible even for highly resonant modes. This is the most important function of the aperture (its sec-
ond most important fuction is that it provides some possibilities of mode selection, depending on its
length and position). — To the first order and for a narrow slot, the impedance transformation ratio N

Figure A-3. Equivalent circuit for aperture-
copled cavity with two modes
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becomes v/c/b *. Intuitively, a more narrow slot (¢—0) becomes better matched to a mode with low
field impedance® in the aperture plane, so the formula is reasonable.
The aperture capacitance is typically so small that it does not appreciably influence the situation®.

A.4.2 Decomposition of TEx modes into TEz and TMz modes

With the load surface in a constant z plane, a pure TEx mode will no longer propagate as that after
traversing the surface. Intuitively, this becomes obvious when the H field there is studied: it has z- and
y-directed components and the latter must induce an z-directed current component in the dielectric
load. This current is acompanied by a likewise z-directed E component, resulting in a violation of the
TExz mode characteristics.

What happens can be understood by decomposing the TE_ z mode intoa TE_ zanda TM,__z
mode. For unidirectional propagation, the mode amplitudes C;; and C},, must be such that the con-
dition E =0 is achieved. Since C for TM modes is for the H field, the factor #, in the expression for
Cry; disappears when the E field is made reference as it is for Cp.. Furthermore, e=1 at the excitation.
The conditions are thus that £\, + E,;,=0, and E ;\, + E .= E, ., . Using Table A-1 this gives, using
the amplitude factors C as reference

Crpmn= Cragmmb/ma~1-v* (TE,,x mode)
(A-9)

Both wavenumbers m/a and n/b influence the balance between the of TEz and TMz components.
Equation (A-9) can be intuitively understood by firstly realizing that the H, and E, fields of a TMz
mode increase in relation to its overall mode power density when a decreases (m/a increases); there-
fore an increase of Cy, is needed to maintain the E, field cancellation. Secondly, the H, and E, fields of
a TEz mode increase in relation to its overall mode power density when n/b increases; therefore Cy
must then decrease. Thirdly, a high v results in weaker horizontal E fields of TMz modes; they weaken
in relation to the overall TMz mode power density; as a result also the E fields of the TEz mode must
decrease, to maintain the field intensity equality.

Since the E;,=E, mode field amplitudes are what is obtained by the Fourier expansion, the fol-

lowing practical relationships are obtained
2 D~

a
E yTMmn = —, p E yTEmn = —~ 5 = =) yTMmn * — E yTEmO = Ey
do= i G 1L a
a? + b2 a? + b2

(A-10)

The TE and TM mode propagation in the cavity is always bidirectional, except for TM Brewster
modes which are approximately reflectionless. The condition £, =0 in the aperture plane is maintained,
which means that the sums (E field differences) (C;"+Cyy ) and (Cpy "+ Cpy ) must instead be used®. It
1s concluded that the orthogonality between the TE_ z and TM, 2 modes is maintained, but their rela-
tive amplitudes and phases are determined by the cavity excitation and the reflection factors at the
load.

The normalised power absorption in the load of the TE_ 2z and TM, 2z modes becomes orthogonal

in terms of the overall power. However, the heating pattern will be determined by the vectorially
added fields.

T The proofis given in Harrington, section 8—10, p 420—423.
I The mode impedance for TEz modes is £* /H", and the field impedance is (£ +E")/(H", —H ).
% This is discussed in Harrington, p 418—419, and in Collin (Foundations for Microwave Engineering), p 334.

§ The plus signs of Cry and Cp apply when they both refer to the £ field. Since the sign for the calculated Cy,; represents the H field, it
has to be revesed in some calculations, to provide equality of TEM waves (v=0).
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A5. Evanescent mode degeneracy

When v> 1, the orthogonality between the forwards and backwards waves in the cavity airspace disap-
pears. This seems not to be pointed out in the literature, but can readily be shown by considering that
the “source” signal C," is reactive due to the imaginary factor /1-v" , and the fact that orthogonality
requires a sine or cosine variation which is replaced by exponential decay for evanescent modes; there
is thus no phase which is needed for orthogonality.

By taking the Poynting vectors in the usual way one obtains the normalized power":

P=3/1-v"-(1-|rf) (v<1; TM and TE modes; C'=1) (A-11a)
P =1Re S =1Re [(1-r)/1v" -(1+7)*] (v>1; TM mode; C'=1) (A-11b)
P =1Re S=1Re {(1+7)-[\/1=v* -(1-r)]*} (v>1; TE mode; C'=1) (A-11c)

Note that an imaginary /1-v* is negative.

A6. Load power of aperture-fed cavity TM and TE modes

The TMz modes are treated first. — Since the E, component is that which determines the the mode am-
plitudes, the conditions for the £ field of this mode is used. The normalisation here is the same as for
equation A-11, except that £ is now set to 1, for both TEz and TMz modes. The horizontal cross
section factors in equation (A-11) are thus not included here.

Firstly, propagating modes are dealt with. Their Poynting vector 3v/1—v* -(1—|r?) becomes pro-
portional to the square of the amplitude of the field (1—-r), where the cavity r is calculated in the feed
plane. Note that » becomes negative for large v beyond Brewster conditions, since the H field is refer-
ence (this applies for the TM modes in this section), so that the factor becomes about 2 near v=1. Sec-
ondly, the input mode E field amplitude is also proportional to v/1—v* , so that this factor squared must
also be included. One obtains the mode power normalised for a input TM mode E field amplitude set
to las

Pmodez% l_lrlz
1-r? J1-v2

When v> 1, the only difference is that the nominator is replaced by the expression in equation
(A-11b). Since reduction by v/1—v* cannot now be made, one obtains

Rel (1-7)y1—-v% - (1+7)*
Pt =3 [ 2 ] (v>1; TM mode; E, =1) (A-12b)
[1-r"-(*=1)

(v<1; TM mode; E, ,=1) (A-12a)

It is to be noted that P, represents what is possible to achieve in infinitely many “normalised”"
cavities having cross section dimensions providing a spectrum of all v values. The normalisation pro-
vides a true comparison for square cavities with mode indices m=n, resulting in equal P__,. for v=0.
It is of particular interest what P__,. is obtained for v=1. For TMz modes this is calculated by
firstly setting the exponential factors exp (Fjk,v/ 1 —v"2z) to 1, representing either z=0 or v=1. After in-
sertion in equation (A-12a) above and some manipulations one obtains, with the horizontal £ field am-

plitude 1 again as reference

T P is “drastically” normalised in equations A-10 by setting C'=1; a=b=1; m=n=1; A,=1 and omitting a resulting integration factor.
Furthermore, r refers to the £ field for TE modes and to the H field for TM modes here and in the following.

A6

POR 03



Pmode = %Re (8/ NVE— 1) 4 T T T T
(v=1 and /£ arbitrary; TM mode; Relative absorbed 52-j20
E=1) (A-13) - Power

Pseudo-Brewster TMz modes have r~0. In 3
a similar way one then obtains P,__,_for

mode

such modes, under the condition that r=0:*

2
P .. ~3Re(elfe—v,') =3Refe+1

(TM pseudo-Brewster mode; E, =1)

(A-14)

Figure A-4 shows the normalised mode

amplitudes for two cases of TM modes in a 0
cavity with 110 mm between the ceiling

and the infinite dielectric covering the

0 20 40 60 80 90 90 90
Equivalent angle of incidence (°) —j10  —j30

whole cross section at the bottom. The Figure A-4. Relative possible power absorption in loads
figure shows what should also be expected: with 110 mm airspace above
that P__,. is continuous at v=1. The re-

mode

quirement is that the cavity feed is by a

horizontal slot in the cavity ceiling, providing a constant £ mode field =1 there. The curve in figure
A-4 for e=52—-j20 clearly shows that the Brewster mode has the highest amplitude, and there is a
distinct inflection point at v=1; there is also a resonance at §’~60°, corresponding to the vertical mode
index 1 (4, is then about 220 mm).

Brewster modes are non-resonant. Interestingly, resonant TMz modes may exist between these, for
vy<v<1. Since the load impedance is then higher than the wave impedance for the cavity mode, the
vertical mode index becomes 3 + an integer p>0. — The TM,,,, mode for e=4—j2 is also clearly seen as
the highest maximum in Figure A-4. There is no TM, , resonance, since this v value happens to be
RVg.

To avoid the no-load resonance for v=1, either an index p=3 mode or an evanescent mode resonance
with v larger than 1 may be employed. Of course, a cavity with a v giving p=1 resonant conditions
near the pseudo-Brewster conditions for typical loads is very useful, and a compromise with the p=3
mode for lower-¢ loads may be possible.

For the TEz modes a completely analogous derivation as for the TMz modes gives the following:

! (1—|r|2)- J1=v2

P s > (v<1; TE mode; E=1) (A-15a)
|1 +7]
Re[(1+r)-{,/1—v2 -(l—r)}*]
P .=} TPE (v>1; TE mode; E=1) (A-15b)
+7r

Again, an imaginary «/1-v” is negative. — By calculations as for the TM mode one finds that P_, —0
for v— 1. Primary differences to TM modes are that there are no Brewster modes, and that the ampli-
tudes of modes with v>1 are insignificant. This is shown in figure A-5. — It should again be noted that

the real power balance between TEz and TMz modes under conditions of simultaneous excitation as a

I The pseudo-Brewster condition is calculated by v*=|e/(¢ +1)|. — Expanding the general equation in a Taylor series gives also the second
order correction. One finds the more accurate formula for the reflected power at §': |ry|* =(6/4)*-(1-2/le|), where & is in radians. The formula
gives a practically insignificant error even for tand up to 3.
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TEz mode are determined by the horizontal

mode indices. Relative absorbed powerl
at
A.7 Mode tmpedances and 3 ™
coupling
Efficient energy coupling of simultaneous

modes requires resonably similar mode im-
pedances. The power sharing can be de-
duced by figure A-3, but since only some
few if any of the modes are resonant, proper
expressions for the absolute value of the 0
impedance of each mode has to be derived.
The field impedance { of the mode de-
termines the conditions for system match-
ing. It must then be observed that only that
part of the H field which is in time phase
with the E field couples power to the load and can provide impedance matching. One obtains

E _‘,/l—v2 -(l—r)‘

Rel = Hocosg . [T+r] coss [cos¢ = atan (Re E;Im E) —atan(Re H;Im H)]

(A-16)

i

0 20 40 60 80 90 90 90
Equivalent angle of incidence (°) —j10  —j30

Figure A-5. Relative possible power absorption in o
load with vermittivity 52—i20: 160 mm airsvace above

The equation is valid for all v. — Of course, one may also calculate the absolute value of {, to obtain
an idea of the overall mode impedance. It may, however, then be better to instead calculate Im{.
Interestingly, the absolute value of { passes “horizontally” through the point v=1 at a value which
gives an almost constant and lower [{]
than Re{. This || is also essentially e-
independent, from about |¢|=4 to 60.
Only if the distance £ is small does Im{ - -
disappear.
As for P__,., the Re{ value for v=0
is obtained in a simple form:
Re(=2L w=p;TM@) = po---
(A-17) o

Field impedance and relative absorbed power

RGC 7/0’5 | Tivanescent mode

,,,,,,,,,,,,,,,,,, [ S papafu i@
/\ resonance

Figure A-6 shows the features of Re(
for TM modes in a 183 mm high cavity T e
with a 3 mm thick load.

5 |
There are jchree important features of s 50 oy 50 30 90 90 30
Rel=f(v): Equivalent angle of incidence (°) —j10 —j30
* it becomes so high for anti- Figure A-6. Field impedance (real ) and relative possible
resonant conditions that power power absorption in a 3 mm thick load with permittivity
coupling to the load becomes vir- 52—320; 160 mm airspace above and 20 mm below.

tually impossible
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* it becomes low and about of the same value (0,1#, to 0,2#,) for low-v resonances
* it becomes very high for v>» 1, thus not “disturbing” the situation for power-propagating modes.

Of particular interest is that the impedance remains reasonably the same over a fairly large 6 interval:
from 80° to (90—j5)° (corresponding to 0,985 <v <1,004). This means that there are no complicated

matching problems between the transmission line and the cavity when such modes are employed alone
or together with other (resonant) modes.

The final conclusion in this section is that Brewster modes and modes with v approaching 1 may in-

deed play a much larger role in microwave ovens than commonly believed. They offer a series of ad-
vantages which must in reality be utilized in many ovens designs, intentionally or unintentionally. The
knowledge provided here may become a tool for proper application of these modes, while avoiding the
problems associated with cavity wall losses in empty operation.

APPENDIX Field amplitudes and characteristic mode impedances

The horizontal variations are sine and cosine functions in mna/a and nny/b and are given in the table as for example ¢_-s , where ¢ is
cos(mmz/a) and s, is sin(nmy/b). There are amplitude constants C* of the *z-directed waves. The propagation factors exp(Fjk,z2,) are

214

multiplied by C*. These terms are marked by C* and ¢~ in the table, respectively. Index ¢ on ¢ and ¢ is also omitted. =1 in the empty
cavity space. The C factors are for £ (TEz) and for H (TMz, TEy), respectively.

Field TEz mode TMz mode TEy mode’
quantity
11, HEC—C)mye-vi/(a,) 8, €, |[HECHC)n/bS, €, HE+C)jmnd /(2abn,)-S,-€,
Hy HC'-C)yne=v¥(bny)-€ oS, |(C+C)m/a-C S, —(C+C)2j[e~(nA2b)) /(A1) €S,
Hz *(C++C)'2j"2/()“o’70)’cm’cn 0 7(C+7C)'n. N S_VZ/(bno)’cm.cn
L HC'+C)n/b-C -8, —(C"-CymyNe-v(ag)C S, | H(C—C)2j\e-v¥A, €, oS,
Ey —~(C+C)mlas, €, —(C"—C)yny Ne-v¥(bey s, €, 0
£, 0 —(C+C)-2jv?n/(Ae€)-S,, 'S, HC'+C)mlaS, -8,
1, ny/\e-v? Ny Ne-v?e NoN&-v¥ [e~(n)yJ2b)?]
N 2|C"PRe(\e-vd)-viab/(nl,) | 2IC P-Re(ve-v¥/e)nviab/,’ 2|C"P-Re[ve-v¥/(e~(nl,/2b)]-ab/(n,),})
Po/S'E 4R b v arbyNT—vE + R a+mlb?y A —
A=Ay (mPatnby] | @v> N 1=v?)
Pend/SFzE RN 1=v/n, R/(nyv1-v?) —

7 The formulas for the impedance and Poynting vectors for these modes are the first order, and given by £, and H only. The theory
for hybrid modes is rather involved, since the excitation properties must normally be included. The formulas in the table are for the
simplified case of equal “nulling” amplitudes of the TEz and TMz modes, and no change of the balance between these upon reflection.

+ The side walls of the waveguide, with equal surface resistance R, (€2/0).

% The end wall of the waveguide, with surface resistance R, (€¥/0).

A9

POR 03



